AKG D99c manual

 

Here is the German language manual for the AKG D99c, also known as Harry.


An English translation courtesy of Google…

Our first artificial heads for experimental stereo listening were made in 1949

The Physics Institute of the University of Budapest conducted experimental tests. Many years of well-founded knowledge of the physical and physiological relationships of human hearing and the experience as a specialist company for electroacoustics have enabled us to make a noteworthy contribution to the artificial head stereo microphone, which has become current again, with the series production of a recording head within a short time. 

The interest of a large circle of committed tape fans and serious amateurs in an inexpensive one, which has recently been aroused by many press reports and extremely positively rated AKG demonstrations among trade visitors. We can now match the artificial head for stereo recordings with the AKG D99c stereo recording head, which is available now.

The material structure of the head and shape of the ear cups, in conjunction with a simplified but acoustically effective simulation of the ear canals in connection with the two special dynamic transducer systems integrated in the head, are tailored to an optimal recording [which is] analogous to human hearing.

When listening through high-quality headphones – regardless of whether closed or open earphones are used – the listener experiences an intensive acoustic sense of space that cannot be achieved when recording with two individual microphones. 

The artificial head as a physical structure itself is above all a prerequisite for the natural occurrence of the factors that determine the spatial impression, such as the difference in intensity, the difference in transit time and the frequency-dependent shadowing effect from one ear to the other. 

The AKG D99c stereo recording head, with its optimally designed frequency response (it must be viewed with different criteria than usual microphones), always ensures consistent objective recording properties and can be used as a “double”, so to speak, where you need to keep your own head free for directing.

The stereo artificial head recording is particularly interesting where moving sound events are involved. For example, playing, singing children, lively design of radio plays or reports; also outdoors, for example with passing cars, noises in the background and much more. 

A further aspect: when recording conferences, it is easily possible for the listening recording clerk to concentrate on a specific speaker and to record his words due to the acoustic-spatial localisation. The spatially lively playback effect of the AKG stereo recording head D99c can be achieved with any AKG stereo headphones of your choice, regardless of whether the recording comes to the listener live via an amplifier or, as a tape recording, is listened to afterwards.

Technical specifications:

Frequency Range: 50-12500Hz

Sensitivity: 2.0mV/Pa = 0.20mV/ubar/channel

Impedance: 600 ohms per channel

Channel deviation: <3 dB for the entire transmission range

Optimum recording height by using an AKG floor stand.

Lustraphone microphone catalogue

Here is a scanned product sheet from Lustraphone, which includes the VR53 and VR64 ribbon microphones, along with dynamic microphones and accessories. Like many other manufacturers, they supplied stands and impedance matching transformers to use with their mics.

With a typically British quirkiness, the price of the VR65 stereo ribbon is given as 30 Guineas rather than pounds, shillings and pence. A guinea was equivalent to one pound and one shilling, so at about 4 times the cost of the mono VR64, the stereo VR65 was a very expensive mic!

In other Lustraphone related news, I have commissioned a batch of replacement enamel badges for Lustraphone VR53 and other microphones. They will be available through the Xaudia website very soon.

Electro-Voice Microphone Catalogue

Here is a scan of an old Electro-Voice catalogue, probably from the 1950s or early 60s, featuring a wide range of microphones. It includes the multi-pattern Cardak, which appears to have been the flagship model, and the V-series ribbon mics. There is no date on the document, but at this point in time the V1 would set you back US$27.50, and the multi-impedance V3 was $50. The Cardak II would set you back a whopping $75!

In the velocity microphone description I was amused to read that “the woven housing allows the sound to pass through without reflection”. This neglects to mention the whopping magnet located at the rear of the ribbon! All of the dynamic ribbon mics were available in 50, 200, 500 ohm and high impedance models, which reflects the plethora of input types around at that time.

The second page deals with carbon and crystal microphones and accessories. The bottom of the page was uppermost in the box, and consequently is somewhat grubby.

Grampian GR1 & GR2 ribbon mic manuals

Grampian made some fine ribbon microphones, and the GR1 and GR2 were our Microphones of the Month in May of last year. Here’s a scan of the original Grampian GR1/2 manual.

Grampian GR1 or GR2 ribbon mic

The mic also came with a word of caution….

Don’t test a ribbon mic with a multi-meter or else…

I am particularly pleased to see the warning not to use a DC meter on these. Quite often I come across ebay auctions where the seller measures ribbon mics with a multimeter, unaware that the carrier current can bump the ribbon out of the magnetic field and stretch it. 🙁

Grampian also made matching transformers for their mics – we have a few available for sale. Here is the factory drawing for the transformer.

Grampian matching transformer wiring.

I posted some other Grampian documents last November.

Many thanks to Pete Guppy for sending this in.